Conformal Solid T-spline Construction from Boundary T-spline Representations
نویسندگان
چکیده
To achieve a tight integration of design and analysis, conformal solid T-spline construction with the input boundary spline representation preserved is desirable. However, to the best of our knowledge, this is still an open problem. In this paper, we provide its first solution. The input boundary T-spline surface has genus-zero topology and only contains eight extraordinary nodes, with an isoparametric line connecting each pair. One cube is adopted as the parametric domain for the solid T-spline. Starting from the cube with all the nodes on the input surface as T-junctions, we adaptively subdivide the domain based on the octree structure until each face or edge contains at most one face Tjunction or one edge T-junction. Next, we insert two boundary layers between the input T-spline surface and the boundary of the subdivision result. Finally, knot intervals are calculated from the T-mesh and the solid T-spline is constructed. The obtained T-spline is conformal to the input T-spline surface with exactly the same boundary representation and continuity. For the interior region, the continuity is C2 everywhere except for the local region surrounding irregular nodes. Several examples are presented to demonstrate the performance of the algorithm.
منابع مشابه
Solid T-spline Construction from Boundary Representations for Genus-Zero Geometry
This paper describes a novel method to construct solid rational T-splines for complex genus-zero geometry from boundary surface triangulations. We first build a parametric mapping between the triangulation and the boundary of the parametric domain, a unit cube. After that we adaptively subdivide the cube using an octree subdivision, project the boundary nodes onto the input triangle mesh, and a...
متن کاملTrivariate solid T-spline construction from boundary triangulations with arbitrary genus topology
A comprehensive scheme is described to construct rational trivariate solid T-splines from boundary triangulations with arbitrary topology. To extract the topology of the input geometry, we first compute a smooth harmonic scalar field defined over the mesh, and saddle points are extracted to determine the topology. By dealing with the saddle points, a polycube whose topology is equivalent to the...
متن کاملA Low-rank Spline Approximation of Planar Domains
Construction of spline surfaces from given boundary curves is one of the classical problems in computer aided geometric design, which regains much attention in isogeometric analysis in recent years and is called domain parameterization. However, for most of the state-of-the-art parameterization methods, the rank of the spline parameterization is usually large, which results in higher computatio...
متن کاملConverting an unstructured quadrilateral/hexahedral mesh to a rational T-spline
This paper presents a novel method for converting any unstructured quadrilateral or hexahedral mesh to a generalized T-spline surface or solid T-spline, based on the rational T-spline basis functions. Our conversion algorithm consists of two stages: the topology stage and the geometry stage. In the topology stage, the input quadrilateral or hexahedral mesh is taken as the initial T-mesh. To con...
متن کاملComponent-aware tensor-product trivariate splines of arbitrary topology
The fundamental goal of this paper aims to bridge the large gap between the shape versatility of arbitrary topology and the geometric modeling limitation of conventional tensor-product splines for solid representations. Its contribution lies at a novel shape modeling methodology based on tensorproduct trivariate splines for solids with arbitrary topology. Our framework advocates a divide-andcon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013